Prospects for Stochastic Background Searches Using Virgo and LSC Interferometers

Giancarlo Cella Carlo Nicola Colacino Elena Cuoco Angela Di Virgilio Tania Regimbau Emma L. Robinson John T. Whelan

(for the LSC-Virgo working group on stochastic backgrounds)

11th Gravitational Wave Data Analysis Workshop

Outline

SBGW detection on a network

- Isotropic background
- Anisotropic background

2 Numerical results

- Generalities
- Detection

Image: 0

Isotropic background Anisotropic background

Outline

- Isotropic background
- Anisotropic background

- 2 Numerical results
 - Generalities
 - Detection

イロト イポト イヨト イヨト

Isotropic background Anisotropic background

Gaussian Case: Detection

Signal probability distribution

$$dP = \mathcal{N} e^{-\frac{1}{2}C_{AB}^{-1}(f)s_{A}^{*}(f)s_{B}(f)} \prod_{C,f} ds_{C}(f)$$

Detection problem: discriminate between

$$C^{(0)} = \begin{pmatrix} N_{11} & 0\\ 0 & N_{22} \end{pmatrix} \text{ and } C^{(1)} = \begin{pmatrix} N_{11} + S_{gw} & \gamma_{12}S_{gw}\\ \gamma_{12}S_{gw} & N_{22} + S_{gw} \end{pmatrix}$$

Solution: optimal correlator

$$Y_{12} \propto \int s_1^*(f) \frac{\gamma_{12}(f) S_{gw}(f)}{f^3 N_{11}(f) N_{22}(f)} s_2(f) df$$

<ロ> <同> <同> <同> < 同> < 同

Isotropic background Anisotropic background

Gaussian Case: Detection

Signal probability distribution

$$dP = \mathcal{N}e^{-\frac{1}{2}C_{AB}^{-1}(f)s_{A}^{*}(f)s_{B}(f)}\prod_{C,f}ds_{C}(f)$$

• Detection problem: discriminate between

$$C^{(0)} = \left(\begin{array}{cc} N_{11} & 0\\ 0 & N_{22} \end{array}\right) \quad \text{and} \quad C^{(1)} = \left(\begin{array}{cc} N_{11} + S_{gw} & \gamma_{12}S_{gw}\\ \gamma_{12}S_{gw} & N_{22} + S_{gw} \end{array}\right)$$

Solution: optimal correlator

$$Y_{12} \propto \int s_1^{\star}(f) rac{\gamma_{12}(f) S_{gw}(f)}{f^3 N_{11}(f) N_{22}(f)} s_2(f) \, dt$$

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Isotropic background Anisotropic background

Gaussian Case: Detection

Signal probability distribution

$$dP = \mathcal{N}e^{-\frac{1}{2}C_{AB}^{-1}(f)s_{A}^{*}(f)s_{B}(f)}\prod_{C,f}ds_{C}(f)$$

• Detection problem: discriminate between

$$C^{(0)} = \left(\begin{array}{cc} N_{11} & 0\\ 0 & N_{22} \end{array}\right) \quad \text{and} \quad C^{(1)} = \left(\begin{array}{cc} N_{11} + S_{gw} & \gamma_{12}S_{gw}\\ \gamma_{12}S_{gw} & N_{22} + S_{gw} \end{array}\right)$$

Solution: optimal correlator

$$Y_{12} \propto \int s_1^{\star}(f) \frac{\gamma_{12}(f) S_{gw}(f)}{f^3 N_{11}(f) N_{22}(f)} s_2(f) df$$

-2

- 3 →

• □ ▶ • • □ ▶ • • □ ▶

Isotropic background Anisotropic background

Overlap Reduction Function $\gamma(f)$

$$SNR^{2} = 2F^{2}T \int_{0}^{\infty} \gamma_{12}^{2}(f) \frac{S_{gw}^{2}(f)}{N_{11}(f)N_{22}(f)} df$$

γ express the coherence between the signals coupled to each detector

- SNR scales with γ
- γ Depends on detectors' distance and orientation

•
$$\gamma$$
's Frequency scale: $f_{AB}^* = \frac{c}{\ell_{AB}}$

Best overlap with Virgo:

Livingston & Hanford below 260 Hz GEO above 260 Hz

イロト イヨト イヨト イヨト

Isotropic background Anisotropic background

Overlap Reduction Function $\gamma(f)$

$$SNR^{2} = 2F^{2}T \int_{0}^{\infty} \gamma_{12}^{2}(f) \frac{S_{gw}^{2}(f)}{N_{11}(f)N_{22}(f)} df$$

 γ express the coherence between the signals coupled to each detector

SNR scales with γ

 γ Depends on detectors' distance and orientation

•
$$\gamma$$
's Frequency scale: $f_{AB}^* = \frac{c}{\ell_{AB}}$

Best overlap with Virgo:

Livingston & Hanford below 260 Hz GEO above 260 Hz

イロト イポト イヨト イヨト

Isotropic background Anisotropic background

Overlap Reduction Function $\gamma(f)$

$$SNR^{2} = 2F^{2}T \int_{0}^{\infty} \gamma_{12}^{2}(f) \frac{S_{gw}^{2}(f)}{N_{11}(f)N_{22}(f)} df$$

 γ express the coherence between the signals coupled to each detector

- SNR scales with γ
- γ Depends on detectors' distance and orientation

• γ 's Frequency scale: $f_{AB}^* = \frac{c}{\ell_{AB}}$

Best overlap with Virgo:

Livingston & Hanford below 260 Hz GEO above 260 Hz

イロト イ団ト イヨト イヨト

Isotropic background Anisotropic background

Overlap Reduction Function $\gamma(f)$

$$SNR^{2} = 2F^{2}T \int_{0}^{\infty} \gamma_{12}^{2}(f) \frac{S_{gw}^{2}(f)}{N_{11}(f)N_{22}(f)} df$$

 γ express the coherence between the signals coupled to each detector

- SNR scales with γ
- γ Depends on detectors' distance and orientation

•
$$\gamma$$
's Frequency scale: $f_{AB}^* = \frac{c}{\ell_{AB}}$

Best overlap with Virgo:

Livingston & Hanford below 260 Hz GEO above 260 Hz

イロト イポト イヨト イヨト

Isotropic background Anisotropic background

Overlap Reduction Function $\gamma(f)$

$$SNR^{2} = 2F^{2}T \int_{0}^{\infty} \gamma_{12}^{2}(f) \frac{S_{gw}^{2}(f)}{N_{11}(f)N_{22}(f)} df$$

 γ express the coherence between the signals coupled to each detector

- SNR scales with γ
- γ Depends on detectors' distance and orientation

•
$$\gamma$$
's Frequency scale: $f_{AB}^* = \frac{c}{\ell_{AB}}$

Best overlap with Virgo:

Livingston & Hanford below 260 Hz GEO above 260 Hz

G. Cella Virgo/LS

Isotropic background Anisotropic background

Overlap Reduction Function $\gamma(f)$

$$SNR^{2} = 2F^{2}T \int_{0}^{\infty} \gamma_{12}^{2}(f) \frac{S_{gw}^{2}(f)}{N_{11}(f)N_{22}(f)} df$$

 γ express the coherence between the signals coupled to each detector

- SNR scales with γ
- γ Depends on detectors' distance and orientation

•
$$\gamma$$
's Frequency scale: $f_{AB}^* = \frac{c}{\ell_{AB}}$

Best overlap with Virgo:

Livingston & Hanford below 260 Hz GEO above 260 Hz

Isotropic background Anisotropic background

Sensitivity Integrand

$$\frac{d \, SNR_{AB}^2}{df} = 2F^2 T \gamma_{AB}^2(f) \, \frac{S_{g_W}^2(f)}{N_{AA}(f) N_{BB}(f)} \, df$$

- 4 months of data
- design sensitivity
- Low frequency: worse than H1/L1 (orientation)
- 200 300 *Hz*: comparable sensitivities
- High frequency: GEO/Virgo pair can do better (smaller separation)

Isotropic background Anisotropic background

Sensitivity Integrand

$$\frac{d SNR_{AB}^2}{df} = 2F^2 T\gamma_{AB}^2(f) \frac{S_{g_W}^2(f)}{N_{AA}(f)N_{BB}(f)} df$$

- 4 months of data
- design sensitivity

< 口 > < 同

- Low frequency: worse than H1/L1 (orientation)
- 200 300 *Hz*: comparable sensitivities
- High frequency: GEO/Virgo pair can do better (smaller separation)

Isotropic background Anisotropic background

Sensitivity Integrand

$$\frac{d \, SNR_{AB}^2}{df} = 2F^2 T \gamma_{AB}^2(f) \, \frac{S_{g_W}^2(f)}{N_{AA}(f) N_{BB}(f)} \, df$$

- 4 months of data
- design sensitivity
- Low frequency: worse than H1/L1 (orientation)
- 200 300 *Hz*: comparable sensitivities
- High frequency: GEO/Virgo pair can do better (smaller separation)

• □ ▶ • □ ▶ • □ ▶

Isotropic background Anisotropic background

Sensitivity Integrand

$$\frac{d \, SNR_{AB}^2}{df} = 2F^2 T \gamma_{AB}^2(f) \, \frac{S_{g_W}^2(f)}{N_{AA}(f) N_{BB}(f)} \, df$$

- 4 months of data
- design sensitivity

< 口 > < 同

- Low frequency: worse than H1/L1 (orientation)
- 200 300 *Hz*: comparable sensitivities
- High frequency: GEO/Virgo pair can do better (smaller separation)

G. Cella

Isotropic background Anisotropic background

Sensitivity Integrand

$$\frac{d \, SNR_{AB}^2}{df} = 2F^2 T \gamma_{AB}^2(f) \, \frac{S_{g_W}^2(f)}{N_{AA}(f) N_{BB}(f)} \, df$$

- 4 months of data
- design sensitivity
- Low frequency: worse than H1/L1 (orientation)
- 200 300 Hz: comparable sensitivities
- High frequency: GEO/Virgo pair can do better (smaller separation)

Isotropic background Anisotropic background

Combined sensitivity

SNR² are additive:

 We can define a combined sensitivity integrand

$$\frac{d\,SNR^2}{df} = \sum_{A > B} SNR_{AB}^2$$

- Overall improvement of a factor 2-3 with combined analysis
- Virgo contributes better when spectrum grows with frequency

イロト イポト イヨト イヨト

Combined sensitivity

- SNR² are additive:
- We can define a combined sensitivity integrand

$$\frac{d\,\text{SNR}^2}{df} = \sum_{A > B} \text{SNR}_{AB}^2$$

- Overall improvement of a factor 2-3 with combined analysis
- Virgo contributes better when spectrum grows with frequency

イロト イポト イヨト イヨト

Isotropic background Anisotropic background

Combined sensitivity

- SNR² are additive:
- We can define a combined sensitivity integrand

$$\frac{d\,SNR^2}{df} = \sum_{A>B} SNR_{AB}^2$$

- Overall improvement of a factor 2-3 with combined analysis
- Virgo contributes better when spectrum grows with frequency

Isotropic background Anisotropic background

Combined sensitivity

- SNR² are additive:
- We can define a combined sensitivity integrand

$$\frac{d\,\text{SNR}^2}{df} = \sum_{A > B} \text{SNR}_{AB}^2$$

- Overall improvement of a factor 2-3 with combined analysis
- Virgo contributes better when spectrum grows with frequency

Isotropic background Anisotropic background

Combined sensitivity

- SNR² are additive:
- We can define a combined sensitivity integrand

$$\frac{d\,SNR^2}{df} = \sum_{A > B} SNR_{AB}^2$$

- Overall improvement of a factor 2-3 with combined analysis
- Virgo contributes better when spectrum grows with frequency

Isotropic background Anisotropic background

Combined sensitivity

- SNR² are additive:
- We can define a combined sensitivity integrand

$$\frac{d\,SNR^2}{df} = \sum_{A > B} SNR_{AB}^2$$

- Overall improvement of a factor 2-3 with combined analysis
- Virgo contributes better when spectrum grows with frequency

< 口 > < 同

Isotropic background Anisotropic background

Astrophysical Models (see T. Regimbau talk)

イロト イポト イヨト イヨト

Isotropic background Anisotropic background

Sensitivity integrands

Improvement of a factor 2-3 with the "full" network

イロト イポト イヨト イヨト

Isotropic background Anisotropic background

Sensitivity integrands

mprovement of a factor 2-3 with the "full" network

イロト イヨト イヨト イヨト

Isotropic background Anisotropic background

Sensitivity integrands

Improvement of a factor 2-3 with the "full" network

Isotropic background Anisotropic background

Upper limits

Image: A math the second se

Isotropic background Anisotropic background

Upper limits

• • • • • • • •

Isotropic background Anisotropic background

Upper limits

< □ > < @

Isotropic background Anisotropic background

Outline

- Isotropic background
- Anisotropic background

2 Numerical results

- Generalities
- Detection

イロト イポト イヨト イヨト

Isotropic background Anisotropic background

Anisotropic background

- · Search for SGWB with delta function distribution
 - for grid of points on sky => 'sky map'
- Map is convolution of true distribution and response function
- · Sanjit Mitra working on deconvolution
 - Conjugate Gradient iterative method

Not much to say until now, mainly question marks

- Sensitivity?
- Blind reconstruction or template-driven one?

(日)

Isotropic background Anisotropic background

Anisotropic background

- · Search for SGWB with delta function distribution
 - for grid of points on sky => 'sky map'
- Map is convolution of true distribution and response function
- · Sanjit Mitra working on deconvolution
 - Conjugate Gradient iterative method

Not much to say until now, mainly question marks

- Sensitivity?
- Blind reconstruction or template-driven one?

イロト イポト イヨト イヨト

Outline

- Isotropic background
- Anisotropic background

2 Numerical results

- Generalities
- Detection

イロト イポト イヨト イヨト

Signal Generation

Strategy:

- Factorization of the covariance array, frequency by frequency
 - Cholesky or SVD
- Vectorial filter applied to white noise streams
 - Overlap and Add to avoid boundary effects

Signal Generation

Strategy:

- Factorization of the covariance array, frequency by frequency
 - Cholesky or SVD
- Vectorial filter applied to white noise streams
 - Overlap and Add to avoid boundary effects

Image: Image:

Signal Generation

Strategy:

- Factorization of the covariance array, frequency by frequency
 - Cholesky or SVD
- Vectorial filter applied to white noise streams
 - Overlap and Add to avoid boundary effects

Checks: in the noiseless case

$$\frac{C_{AB}^{(1)}}{\sqrt{C_{AA}^{(1)}C_{BB}^{(1)}}} = \frac{S_{GW}\gamma_{AB}}{\sqrt{(S_{GW} + N_{AA})(S_{GW} + N_{BB})}} \rightarrow \gamma_{AB}$$
$$C_{AA}^{(1)} \rightarrow S_{GW}$$

イロト イポト イヨト イヨト

Generalities Detection

Signal Generation Checks

• Time domain (flat Ω_{GW})

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 = ∽ へ ⊙

Generalities Detection

Signal Generation Checks

• Overlap reduction function recostruction (γ_{AB}^2)

Outline

- Isotropic background
- Anisotropic background

2 Numerical results

- Generalities
- Detection

イロト イポト イヨト イヨト

Generalities Detection

Detection: Flat Ω_{GW}

Hanford & Virgo

- Data injected in project1a noise at different SNR ratios
- Results agree with expectations with all the used pipelines (both for simulation & detection)

< 口 > < 同

Generalities Detection

Detection: Flat Ω_{GW}

- Hanford & Virgo
- Data injected in project1a noise at different SNR ratios
- Results agree with expectations with all the used pipelines (both for simulation & detection)

< 口 > < 同

Generalities Detection

Detection: Flat Ω_{GW}

- Hanford & Virgo
- Data injected in project1a noise at different SNR ratios
- Results agree with expectations with all the used pipelines (both for simulation & detection)

Generalities Detection

Detection: Astrophysical Models

Project1a + LLO

- Magnetars & DNS spectrum scaled to different SNR ratios
- Analysis in progress

(日)

Generalities Detection

Detection: Astrophysical Models

Project1a + LLO

- Magnetars & DNS spectrum scaled to different SNR ratios
- Analysis in progress

Generalities Detection

Detection: Astrophysical Models

Project1a + LLO

- Magnetars & DNS spectrum scaled to different SNR ratios
- Analysis in progress

< 口 > < 同

Summary

- Virgo/LSC collaboration can improve the sensitivity and the robustness of stochastic background search.
- We are far from the perspective of a real detection, but we can improve upper limits and work in the perspective of second generation interferometers.
- Future steps:
 - Analysis of project1b data
 - Real data (as soon as MOU will be signed)
 - Non stationarity
 - Non gaussianity
 - Start with radiometer research