

Coherent detection and reconstruction of burst events in S5 data

S.Klimenko, University of Florida for the LIGO scientific collaboration

11th Gravitational Wave Data Analysis Workshop

- coherent network analysis
- coherent WaveBurst pipeline
- S5 data
- S5 results (all results are preliminary)
- Summary

- Target detection of burst sources (inspiral mergers, supernova, GRBs,...)
 - > use robust model-independent detection algorithms
- For confident detection combine measurements from several detectors
 - handle arbitrary number of co-aligned and misaligned detectors
 - > confident detection, elimination of instrumental/environmental artifacts
 - reconstruction of source coordinates
 - reconstruction of GW waveforms
- Detection methods should account for
 - >variability of the detector responses as function of source coordinates
 - differences in the strain sensitivity of the GW detectors
- Extraction of source parameters
 - >confront measured waveforms with source models

Combine data, not triggers; solve inverse problem of GW detection

- Guersel, Tinto, PRD 40 v12, 1989
 - reconstruction of GW signal for a network of three misaligned detectors
- Likelihood analysis: Flanagan, Hughes, PRD57 4577 (1998)
 - > likelihood analysis for a network of misaligned detectors
- Two detector paradox: Mohanty et al, CQG 21 S1831 (2004)
 - state a problem within likelihood analysis
- Constraint likelihood: Klimenko et al, PRD 72, 122002 (2005)
 - address problem of ill-conditioned network response matrix
 - First introduction of likelihood constraints/regulators
- Penalized likelihood: Mohanty et al, CQG 23 4799 (2006).
 - likelihood regulator based on signal variability
- Maximum entropy: Summerscales at al, to be published
 - likelihood regulator based on maximum entropy
- Rank deficiency of network matrix: Rakhmanov, CQG 23 S673 (2006)
 - likelihood based in Tickhonov regularization
- Redundancy veto: Schutz et al, CQG 22 S1321 (2005)
- GW signal consistency: Chatterji et al, PRD 74 082005(2006)
 - > address problem of discrimination of instrumental/environmental bursts

Likelihood for Gaussian noise with variance s²_k and GW waveforms h₊, h_x: x_k[i] – detector output, F_k – antenna patterns

$$L = \sum_{i} \sum_{k} \frac{1}{2s_{k}^{2}} \Big[x_{k}^{2}[i] - (x_{k}[i] - x_{k}[i])^{2} \Big]$$

detector response - $\mathbf{x}_k = h_+ F_{+k} + h_x F_{xk}$

- Find solutions by variation of *L* over un-known functions h₊, h_x (Flanagan & Hughes, PRD 57 4577 (1998))
- Split energy between signal and noise

$$2 L = E - N$$

detected (signal) total noise (null)
energy energy energy

DPF solution for GW waveforms satisfies the equation

$$\begin{bmatrix} \sum_{k} \frac{x_{k}[i]}{\mathbf{s}_{k}^{2}} F_{+k} \\ \sum_{k} \frac{x_{k}[i]}{\mathbf{s}_{k}^{2}} F_{\times k} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \sum_{k} \frac{F_{+k}^{2}}{\mathbf{s}_{k}^{2}} & 0 \\ 0 & \sum_{k} \frac{F_{\times k}^{2}}{\mathbf{s}_{k}^{2}} \end{bmatrix} \begin{bmatrix} h_{+} \\ h_{\times} \end{bmatrix} \rightarrow \begin{bmatrix} X_{+} \\ X_{\times} \end{bmatrix} = g \begin{bmatrix} 1 & 0 \\ 0 & \mathbf{e} \end{bmatrix} \begin{bmatrix} h_{+} \\ h_{\times} \end{bmatrix}$$

g – network sensitivity factor
e – network alignment factor

network response matrix (PRD 72, 122002, 2005)

• Any network can be described as two virtual detectors

detector	output	noise var.	likelihood	SNR
plus	X_+	8	$L_{+}=X_{+}^{2}/g$	$g\int h_{+}^{2}dt$
cross	X _x	eg	$L_{\rm x} = X_{\rm x}^2 / eg$	$eg\int h_{\times}^2 dt$

L1xH1xH2 network not sensitive to h_x

- Use "soft constraint" on the solutions for the h_x waveform.
 - remove un-physical solutions produced by noise
 - > may sacrifice small fraction of GW signals but
 - > enhance detection efficiency for the rest of sources

 $L = L_{+} + L_{\times}$ $L_{soft} = L_{+} + eL_{\times}$

Coherent WaveBurst

• Similar concept as for the incoherent WaveBurst, but use coherent detection statistic

• Uses most of existing WaveBurst functionality

LIGO network

- > S5a, Nov 17, 2005 Apr 3, 2006
 - live time 54.4 days, preliminary DQ is applied
- > S5 (first year), Nov 17, 2005 Nov 17, 2006
 - live time 166.6 days (x10 of S4 run)
 - duty cycle 45.6% (after data quality cuts)

LIGO-Geo network

- > S5 (first year), Jun 1, 2006 Nov 17, 2006
 - live time 83.3 days

• run fully coherent analysis with LIGO and LIGO-Geo networks

- Frequency band 64-2048 Hz
- results are presented for *time-shifted data*: 100 artificial data samples where L1 detector is shifted in time with respect to the other detectors

🔊 Likelihood of coherent WaveBurst triggers 📥

- For Gaussian stationary detector noise any event with significant likelihood is a "GW signal"
- For real data the pipeline output is dominated by glitches
- Glitch's responses are "typically inconsistent in the detectors"
- **Coincidence, correlation, "similarity of waveforms" what is** the meaning of this in the coherent analysis?

Waveform Consistency

 $\mathbf{x}_{rss} = \sqrt{\int \mathbf{x}^2(t) dt}$

- How to quantify consistency?
 - select a coincidence strategy
 - use network correlation coefficient

- Coherent triggers are coincident in time by construction
 - Definition of a coincidence between detectors depends on selection cuts on energy reconstructed in the detectors

$$E_i = \langle x_i^2 \rangle - N_i$$
 $\langle x_i^2 \rangle$ - total energy
 N_i - null (noise) energy

Optimal coincidence strategies are selected after trigger production

- ► loose: $E_{H1} + E_{H2} + E_{L1} > E_T$ (same as likelihood → "sum of detected SNRs")
- **b** double OR: $E_{H1} + E_{H2} > E_T \&\& E_{H1} + E_{L1} > E_T \&\& E_{H2} + E_{L1} > E_T$
- > triple: $E_{H1} > E_T \&\& E_{H2} > E_T \&\& E_{L1} > E_T$

S.Klimenko, G060621-00-Z, December 21, 2006, GWDAW11

• detected energy: in-coherent coherent $2L = \sum_{i,j} \langle x_i x_j \rangle C_{ij} = E_{i=j} + E_{i\neq j}$

 C_{ij} - depend on antenna patterns and variance of the detector noise x_i , x_j – detector output

network correlation

S.Klimenko, G060621-00-Z, December 21, 2006, GWDAW11

S5 Rates

$$\sqrt{r_{eff}} = [3.6, 5.0]$$

S.Klimenko, G060621-00-Z, December 21, 2006, GWDAW11

rate vs threshold

Detection efficiency for bursts

- Use standard set of ad hoc waveforms (SG,GA,etc) to estimate pipeline sensitivity
- Coherent search has comparable or better sensitivity than the incoherent search
- Very low false alarm (~1/50years) is achievable

hrss@50% in units 10²² for sgQ9 injections

rate	search	70	100	153	235	361	553	849	1053
S5a: 1/2.5y	WB+CP	40.3	11.6	6.2	6.6	10.6	12.0	18.7	24.4
S5a: 1/3y	cWB	28.5	10.3	6.0	5.6	9.6	10.7	16.9	21.9

expected sensitivity for full year of S5 data for high threshold coherent search

set thresholds to yield no events for 100xS5 data (rate ~1/50 years)

- expected S5 sensitivity to sine-gaussian injections

see Brian's talk for comparison with the incoherent high threshold search

S.Klimenko, G060621-00-Z, December 21, 2006, GWDAW11

• **GEO should not reduce network sensitivity, but help for sky locations unfortunate for LIGO, if GEO noise is fairly stationary (see Siong's talk)**

network sensitivity
$$g \propto \sum_{k} \frac{F_{+k}^2 + F_{\times k}^2}{S_k^2}$$
, detected $SNR \propto gh_{rss}^2$

 Determine relative "glitcheness" of detectors by sorting coherent triggers on the value of SNR (r_k) in the detectors

 $r_{I1} > r_{H1} \& r_{I1} > r_{H2} \& r_{I1} > r_{G1}$

For example, call a trigger to be the L1 glitch if

time-shifted data

$$\begin{array}{c} \text{dominated by GEO} \\ \hline \texttt{me} \\ \textbf{dominated by GEO} \\ \hline \texttt{fit} \\ \texttt{f$$

- If GW signal is detected, two polarizations and detector responses can be reconstructed and confronted with source models for extraction of the source parameters
- Figures show an example of LIGO magnetic glitch reconstructed with the coherent WaveBurst event display (A.Mercer et al.)
 - Environment may produce glitches consistent in the LIGO network!
- Additional information from environmental channels and other detectors is very important for confident detection of GW signals (see Erik's & Laura's talks on veto)

coherent WaveBurst pipeline

- > generated coherent triggers for one year of S5 data
- ➤ robust discrimination of glitches → extra-low false alarm rate at excellent sensitivity
- excellent computational performance: S5 trigger production for 101 time lags takes 1 day.
- Environment may produce consistent glitches
 - GEO and Virgo are essential for confident detection
 - > need detail data quality and veto analysis
- prospects for S5 un-triggered coherent search
 > analyze outliers and apply DQ and veto cuts
 > final estimation of the detection efficiency and rates
 > analyze zero lag triggers → produce final result