Phenomenological template bank for Black hole coalescence waveforms

P. Ajith for the **AEI – Jena NRDA Collaboration**

S. Babak, Y. Chen, B. Krishnan, M. Hewitson, A.M. Sintes B. Bruegmann, J. Gonzalez, M. Hannam, M. Hewitson, S. Husa, D. Pollney, L. Rezzolla, U. Sperhake, J. Thornburg

GWDAW 11, Potsdam 20 Dec 2006

- Coalescing BH binaries are one of the most promising sources for ground/space-based IFOs.
- The inspiral and ring-down stages can be accurately modelled by approximation and perturbation techniques in GR.
- Signals from inspiral and ring-down stages can be probed via optimal filtering. So far, signals from merger part are probed only via non-optimal filters.
- For M >~ 50 M_☉, only the merger+ring-down parts of the coalescence signal falls into the detection band of ground based detectors. This sets a limit on the mass of the binaries which can be probed through matched filtering techniques using *inspiral* templates.
- Similarly, there will be a lower limit on the mass for which pure ringdown templates can be used.
- Recent progress in Numerical Relativity in calculating the waveforms from BH mergers.

 Coherently search for all three stages of the BH coalescence signals through a single (phenomenological) template bank. The template waveforms should contain inspiral, merger and ring-down stages.

A single template bank for BH coalescence

- Issue How to construct a bank of templates?
 - May be too expensive to compute a bank of NR waveforms dense enough in the (m₁, m₂) parameter space.
 - An interpolated template bank with parametrized templates.
- Issue How to construct the 'target' waveforms?
 - Need waveforms containing all three stages of binary coalescence too expensive to (numerically) evolve the binary from very large separations.
 - Match PN inspiral waveforms with NR (merger+ring-down) waveforms.
- Issue How accurate/unique are the 'target' waveforms?
 - Different methods/initial data may predict slightly different waveforms might not be unique for the same physical system.
 - Parametrisation allows flexibility for incorporating such differences.
- Issue How to lay down the templates?
 - Laying down the templates allowing a given mismatch.
 - The metric of the parameter space can be evaluated from the parametrized waveforms (or, directly from the numerical waveforms).

 Minimize least square difference between PN (inspiral) and NR (merger+ring-down) waveforms over a matching region (a few cycles long), thus construct hybrid waveforms.

Free parameters

- Extrinsic: initial phase ϕ_0 of the inspiral wave, amplitude *a* of the merger wave, time-slide τ between the inspiral and merger waveforms.
- Intrinsic: total mass M and mass-ratio $R = m_1/m_2$.

 Check internal consistency of the matching procedure by calculating overlaps between hybrid waveforms generated with different matching regions.

Matching PN and NR waveforms

Inspiral merger and 'hybrid' waveforms from $M = 40M_{\odot}$, R = 1 binary.

Inspiral waveforms: 3.5PN in phase, 'restricted' PN, TaylorT1.

Merger waveforms: Equal mass (f500) simulation of the AEI group.

Fourier domain magnitude of the 'hybrid' waveforms constructed using different matching regions.

Merger waveforms used: Equal mass (d5) simulation of the AEI group.

Matching PN and NR waveforms

Inspiral merger and 'hybrid' waveforms from $M = 40M_{\odot}$, R = 1 binary.

Inspiral waveforms: 3.5PN in phase, 'restricted' PN, TaylorT1.

Merger waveforms: Equal mass (f500) simulation of the AEI group.

Two best fit power-laws $(f^{-7/6} \text{ and } f^{-2/3})$

Fourier domain magnitude of the 'hybrid' waveforms constructed using different matching regions.

Merger waveforms used: Equal mass (d5)

simulation of the AEI group.

(Similar results by Buonanno, Cook & Pretorius)

Matching PN and NR waveforms

 $M_{\text{merg}} = 40 \ M_{\odot}$ $R_{\text{merg}} = 1$ Merger wave: d5 simulation of AEI Matching region ~ 4 cycles of merger M_{insp} physical mass of the inspiral
M_{merg} ADM mass of the merger
R_{insp} mass-ratio of the inspiral
R_{merg} mass-ratio of the merger

Consistency of the matching

Overlaps between 'hybrid' waveforms (3.5PN+AEI NR) constructed from a sliding matching region (100 *M* long). Overlaps are calculated using Initial LIGO noise spectrum

 Test the internal consistency of the matching by finding the overlaps between the 'hybrid' waveforms constructed from 'nearby' matching regions (with a sliding matching region) – analogous to a Cauchy convergence test.

Merger waveforms from f500 simulation of the AEI group

Use the following frequency domain parametrisation for the BH coalescence waveforms

$$h(f) = \mathcal{A}(f) \exp[i\Psi(f)],$$

$$\mathcal{A}(f) \propto \begin{cases} f^{-7/6} \left(1 - \alpha^{2/3}\right) & \text{if } f < f_{\text{merg}} \\ f^{-2/3} & \text{if } f_{\text{merg}} \leq f < f_{\text{ring}} \\ L(f, f_{\text{ring}}, \sigma) & \text{if } f_{\text{ring}} \leq f < f_{\text{cut}} \end{cases}$$

$$\Psi(f) = f^{-5/6} \left(\psi_0 + \psi_3 f + \psi_4 f^{4/3} \right)$$

 Use the following frequency domain parametrisation for the BH coalescence waveforms (motivated by BCV templates)

• Re-parametrize the templates in terms of *M* and *R*. The template family is a two dimensional (interpolated) manifold embedded in a higher dimensional space, with an induced metric.

 Target waveforms might not be unique for the same physical system. But the parametrisation allows flexibility for incorporating such differences.

Fitting factors with the target waveforms

Fitting factors with the target waveforms

Sensitivity of the search

- Recent progress in Numerical Relativity in modelling the non-perturbative merger phase of the binary black hole coalescence problem.
- Proposed a phenomenological waveform family which can model the inspiral, merger, and ring-down stages of black hole coalescence (1 < massratio < 4).
- This 8-parameter phenomenological family can be parametrized in terms of two physical parameters \rightarrow two-parameter template bank.
- This template bank might enable us to extend the present inspiral searches to higher mass binary black hole systems \rightarrow increased reach of the current generation of ground based detectors.