GRB triggered Inspiral Searches in the fifth Science Run of LIGO

Alexander Dietz
Cardiff University
for the LIGO Scientific Collaboration
Contents

• (Short) Gamma Ray Bursts
• Benefits of a triggered inspiral search
• Code implementation
• Analysis plans
• What can we learn?
• Summary/Outlook
Gamma Ray Bursts

- Long GRB
 - Associated with Stellar collapse
 - 112 found, 33 with redshift

- Short GRB
 - Evidence for compact binary progenitors
 - 14 found, 3 with redshift

http://space.mit.edu/HETE/Bursts/
GRB triggers

- Triggers obtained from the following places:
 - GCN circulars (http://gcn.gsfc.nasa.gov/gcn3_archive.html)
 - List of GRB derived from GCN alerts (maintained by Isabel Leonor)
Benefits from a triggered Inspiral search

- Other inspiral searches are blind
 - Location and time of binary inspiral & merger are unknown

- GRB triggered search:
 - **Sky location gives time-delay between sites**
 - Relative amplitude correlated for each instrument
 - Quite rare events (one short GRB per month)
 - Possible to decrease SNR threshold to increase the range of this search
Benefits from a triggered Inspiral search

• Triggered Burst search done
 – No waveforms available, range limited
 – Results for S2, S3 and S4 near publishing

S D Mohanty et al 2004 Class. Quantum Grav. 21 S1831-S1837
LIGO-P060024-02-Z (To be submitted to Phys. Rev. D)

The GRB triggered inspiral search can probe deeper into the data
Inspiral search pipeline

- Same pipeline used as blind search
- Small changes for injection code
- Incorporate known time delay between detector sites
- Use newly developed coincident technique

-> see talk by Craig Robinson
How is the search done?

- GRB trigger gives estimate of binary merger time.
- Assuming GW signal within some time around GRB (on-source)
- Background determined from data enough far away from GRB time (off-source)
Injection Population

- Merger of NS-NS or NS-BH
 - Used range mass1=[1-3 M\(_\odot\)] (NS)
 - Used range mass2=[1-30 M\(_\odot\)] (NS/BH)
 - Injections & templates: PN waveforms
 - Distances uniform distributed in log\(_{10}\) from 10 Mpc to 500 Mpc
Analysis plan

• Short Term:
 – Analyze playground segments in S5 (on- and off source), background studies
 – Perform injections into this playground
 • A fake GRB located optimally
 • A fake GRB mimicking the location of GRB 060427B

• Long term:
 – Analyze all real S5 GRB's
 GRB 060427B:
 • short GRB (~0.2 sec)
 • all LIGO detectors working
 • no redshift estimate
 • almost optimal located (~92%)
What can we learn?

• In the case of a detection:
 – Confirmation of a binary system as progenitor
 – Gravitational-wave observation can determine the distance to the GRB

• Even in the case of no-detection:
 – Derive exclusion area for masses
 – Example shown for hypothetical GRB detected at some redshift
Summary & Outlook

• GRB triggered search: Location and time known
• Much deeper search possible, tight cuts on out coming triggers
• Uses same pipeline as other inspiral searches
• Much higher detection range possible

❖ To be done:
 • Tune some parameters (tight cuts)
 • Finish analysis on fake GRB
 • Analyze real GRB (e.g. GRB 060427B)
 • Extend search to all real GRB's with LIGO data available