Results of the Hardware Injections performed on the LIGO Interferometers

Myungkee Sung
for the LIGO Science Collaboration

11th Gravitational Wave Data Analysis Workshop
December 18 2006 @ Potsdam, Germany

LIGO-G060646-00-Z
LIGO Hardware Injections

- Hardware injections are the only direct test of detector time response.
 - Detector deforms gravitational waveform in a predictable (?) way.
 - Detector response function quantifies this deformation.
- Injections are also a good test for measuring the absolute size of signal.
- Hardware injections on the S5 run of LIGO
 - Burst/Inspiral injections, pulsar injections, stochastic injections, special injections.
 - Very little dead time - <0.5% of livetime due to burst/inspiral injections
- Analysis consists of successive application of linear filters on raw data (error signal):
 - Whitening filters, applied once and twice.
 - Transformed template (from strain to error signal)
- Diagnostic tool with prompt analysis after each injection.
- KleineWelle analysis of veto safety of auxiliary data channels
• Infer strain \(s(f) \) from observable \(DERR(f) \):

\[
s(f) = R(f)DERR(f)
\]

• Calibration team measures this detector response function \(R(t,f) \):

\[
R(t,f) = \frac{1 + \gamma(t)G_0(f)}{\gamma(t)\gamma_0(f)}
\]

where open loop gain \(G_0(f) \):

\[
G_0(f) = D(f)A(f)C_0(f)
\]

• \(EXC_x(t) \) for hardware injections:

\[
EXC_x(f) = -h_{inj}(f)/A_x(f)
\]
Burst Injections

• Twenty different burst waveforms in strain, \(h(t) \)

 - Four Gaussians: \(\sigma = 0.3, 1.0, 3.0, 10 \) ms.
 - Sine-Gaussians (Q=9) with 12 frequencies from 50Hz to 3068Hz
 - Supernova waveform: Zwerger-Mueller (A3B3G1)
 - Cosmic string - cusp (\(f_{\text{cutoff}} = 220\)Hz)
 - Band-limited white noise burst: \(f = 250\)Hz, \(\delta f = 100\)Hz and \(\sigma = 30\)ms
 - Ringdown: \(f = 2600\)Hz \(\delta t = 30\)ms

• Various settings of strengths and time for each injections

 - Same waveform injected to three IFOs with time shifts (if in science mode).
 - Two regular injections daily on average, each with three waveforms.
 - Loud injections of Gaussians and sine-Gaussian at least once per week for studying coupling to auxiliary channels and impulse response of detector.
Gaussian ($\sigma = 0.3\text{ms}$) injection

- Use actuation function, $A_x(f)$, to calculate the excitation function:
 \[EXC_x(f) = -\frac{h_{\text{inj}}(f)}{A_x(f)} \]

- Note: this injection is approximately an impulse in strain.
Result of injection
or impulse response

DERR data w/ Gaussian (σ=0.3ms) injection at 833364049

Zoom-in
Analyzing Injection Data

- Matlab scripts (python scripts for controlling jobs)
- Use $DERR(t)$ data
- Time windows of 64s, Tukey windowing to use the middle 48s
- Whitening filters
 - Single whitening filter:
 $$sw(t) = \int_0^\infty \frac{derr(f)}{\sqrt{S(f)}} e^{-2\pi ift} df$$
 - Double whitening filter:
 $$dw(t) = \int_0^\infty \frac{derr(f)}{S(f)} e^{-2\pi ift} df$$
 - Noise estimate, $S(f)$, from two 50s long data before and after injection period.
Whitened DERR
or whitened impulse response
Optimal Linear Filter

\[\|h(t)\| = N_\alpha \int_0^\infty \frac{d_\alpha^*(f)derr(f)}{S(f)} e^{-2\pi ift} \, df \]

- A standard method from classical signal processing.
- Matched filter study: template from injected waveforms with the detector response function (Calibration):
 \[d_\alpha(f) = h_{\text{inj}}(f)/R(f) \]
- Optimized for the measured stationary noise of detector - Double whitening.
- It is also a linear measure of the strength;
 - Choose normalization so \(\|h\|\) is unbiased estimate of true \(h_{\text{rss}}\) of this waveform.
 - Response functions cancel, i.e., the equivalent expressions for either observable \(DERR(t)\) or strain \(s(t)\).
Filtered output from loud Gaussian

- **Strength Measurement**
 - Injected: $20 \times 10^{-21} s^{1/2}$
 - Measured: $19.984 \times 10^{-21} s^{1/2}$
 - rms(noise): $0.0357 \times 10^{-21} s^{1/2}$

- **Time measurement**
 - Injected time offset: 0.5 s
 - Measured time offset: 0.5001 s
Supernova waveform: Zwerger-Mueller (A3B3G1)

- **Strength Measurement**
 - Injected: $0.6 \times 10^{-21}s^{1/2}$
 - Measured: $0.661 \times 10^{-21}s^{1/2}$
 - rms(noise): $0.04168 \times 10^{-21}s^{1/2}$

- **Time Measurement**
 - Injected offset: 0.3555s
 - Measured offset: 0.3558s
Hardware injection monitoring

- snapshot of online display for scimons -

<table>
<thead>
<tr>
<th>Intended Injection Parameters</th>
<th>Resulting Waveforms</th>
<th>Results</th>
<th>Direct Response (DARM_ERR whitened)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{\text{Inj}}=832561960$</td>
<td></td>
<td>$\epsilon_h = (\text{hrss} \text{expected})^{-3/2} \text{hrss}\text{peak}/\sigma{\text{noise}}$ σ_{noise} rms(noise)</td>
<td>$\chi^2=0.874915$ (sw), 0.859358 (dw)</td>
</tr>
<tr>
<td>Sine-Gaussian</td>
<td></td>
<td>$\text{hrss}_\text{peak} = -8.292 \times 10^{-21} \text{s}^{1/2}$</td>
<td>$\epsilon_h = -5.243$, $\sigma = 5.560 \times 10^{-23} \text{s}^{1/2}$</td>
</tr>
<tr>
<td>$f=70 \text{Hz}$ $Q=9$</td>
<td></td>
<td>$\Delta t_{\text{peak}} = 0.7980 \text{s}$</td>
<td>$\delta(\Delta t) = 0.0000 \text{s}$</td>
</tr>
<tr>
<td>$t_{\text{offset}}=0.798 \text{s}$</td>
<td></td>
<td>$\text{hrss}_\text{peak} = 4.8 \times 10^{-21} \text{s}^{1/2}$</td>
<td>$\epsilon_h = -0.106$, $\sigma = 8.468 \times 10^{-23} \text{s}^{1/2}$</td>
</tr>
<tr>
<td>$\text{hrss}=8 \times 10^{-21} \text{s}^{1/2}$</td>
<td></td>
<td>$\Delta t_{\text{peak}} = 0.7980 \text{s}$</td>
<td>$\delta(\Delta t) = 0.0000 \text{s}$</td>
</tr>
<tr>
<td>$T_{\text{Inj}}=832561970$</td>
<td></td>
<td>$\text{hrss}_\text{peak} = 4.8 \times 10^{-21} \text{s}^{1/2}$</td>
<td>$\epsilon_h = 0.874915$ (sw), 0.859358 (dw)</td>
</tr>
<tr>
<td>Sine-Gaussian</td>
<td></td>
<td>$\Delta t_{\text{peak}} = 0.7980 \text{s}$</td>
<td>$\delta(\Delta t) = 0.0000 \text{s}$</td>
</tr>
<tr>
<td>$f=914 \text{Hz}$ $Q=9$</td>
<td></td>
<td>$\text{hrss}_\text{peak} = 8 \times 10^{-21} \text{s}^{1/2}$</td>
<td>$\epsilon_h = -1.474 \times 10^{-21} \text{s}^{1/2}$</td>
</tr>
<tr>
<td>$t_{\text{offset}}=0.798 \text{s}$</td>
<td></td>
<td>$\Delta t_{\text{peak}} = 0.7980 \text{s}$</td>
<td>$\delta(\Delta t) = 0.0000 \text{s}$</td>
</tr>
<tr>
<td>$\text{hrss}=1.4762 \times 10^{-21} \text{s}^{1/2}$</td>
<td></td>
<td>$\epsilon_h = 0.092$, $\sigma = 2.803 \times 10^{-23} \text{s}^{1/2}$</td>
<td>$\chi^2=1.060200$ (sw), 0.962461 (dw)</td>
</tr>
</tbody>
</table>

- Mismatched Filter Study

- χ^2 values indicate goodness of fit.
Gaussian $\sigma=1\text{ms}$: Strength Measurement

$L1$: 452 Injections

$\Delta||h|| = ||h||_{\text{measured}} - ||h||_{\text{injected}} = -0.31\pm1.1 \text{ rms(noise)}$
Gaussian $\sigma=1\text{ms}$: Time Measurement

\[\Delta t = t_{\text{measured}} - t_{\text{injected}} = -0.15\pm0.14\text{ ms} \]
Measuring Burst Injections

• Jan. 19 - Aug. 23, 2006
• Number of injections:
 • H1 - 5018
 • H2 - 5958
 • L1 - 4098
Veto Safety Study using Hardware Injection

- Transients identified by KleineWelle algorithm on auxiliary data channels at the time of injections
- Injections from 272 days of S5 run
- From DERR:

![Graphs showing significance vs. injected ||h|| and ΔTime (s)]
Veto Safety Study using Hardware Injection

- **RMP (Recycling Mirror Pitch)** - Safe

- **ASI (Antisymmetric port In-Phase)** - Unsafe

Injected $||h||$

Significance

Injected $||h||$

Significance

DeltaTime (s)

DeltaTime (s)
Summary

• Hardware injection provides very useful tools to understand the performance of interferometers.
• Injections during S5 are analyzed by using
 - Whitening filters
 - Optimal linear filters
 - KleineWelle algorithm
• Prompt result from hardware injections is available and used as a diagnosis tool.
• From statistical study, detector response to injected waveforms is analyzed.
• Veto safety study on auxiliary data channels with transients from KleineWelle algorithm.