Coherent Bayesian analysis of inspiral signals

Christian Röver1, Renate Meyer1, Gianluca Guidi2, Andrea Viceré2 and Nelson Christensen3

1The University of Auckland
Auckland, New Zealand

2Università degli Studi di Urbino
Urbino, Italy

3Carleton College
Northfield, MN, U.S.A.
Overview:

1. The Bayesian approach
2. MCMC methods
3. The inspiral signal
4. Priors
5. Example application
The Bayesian approach

- idea: assign probabilities to parameters θ
- pre-experimental knowledge: prior probabilities / -distribution $p(\theta)$
- data model: likelihood $p(y|\theta)$
- application of Bayes’ theorem yields the posterior distribution

$$p(\theta|y) \propto p(\theta) p(y|\theta)$$

conditional on the observed data y.

- posterior distribution combines the information in the data with the prior information
MCMC methods - what they do

• Problem -
 given: posterior distribution $p(\theta|y)$ (density, function of θ)
 wanted: mode(s), integrals,...

• what MCMC does:
 simulate random draws from (any) distribution, allowing to approximate any integral by sample statistic (e.g. means by averages etc.)

• Monte Carlo integration
MCMC methods - how they work

- **Markov Chain Monte Carlo**
- random walk
- **Markov property**: each step in random walk only depends on previous
- **stationary distribution** is equal to the desired posterior $p(\theta|y)$
- most famous: **Metropolis- (Hastings-) sampler**
 especially convenient: normalising constant factors to $p(\theta|y)$ don’t need to be known.
MCMC methods

- Metropolis-algorithm may also be seen as optimisation algorithm: improving steps always accepted, worsening steps sometimes (→ Simulated Annealing)

- in fact: purpose often both finding mode(s) and sampling from them
The inspiral signal

- measurement: time series (signal + noise) at, say, 3 separate interferometers

- **signal**: chirp waveform; 2.5PN amplitude, 3.5PN phase\(^1\),\(^2\)

- **9 parameters**: masses \((m_1, m_2)\), coalescence time \((t_c)\), coalescence phase \((\phi_0)\), luminosity distance \((d_L)\), inclination angle \((i)\), sky location \((\delta, \alpha)\) and polarisation \((\psi)\)

\(^1\)K.G. Arun et al.: *The 2.5PN gravitational wave polarizations from inspiralling compact binaries in circular orbits*, Class. Quantum Grav. 21, 3771 (2004).

The signal at different interferometers

- **‘local’ parameters** at interferometer I:

 - Sky location (δ, α) → altitude $(\psi(I))$ / azimuth $(\varphi(I))$
 - Coalescence time (t_c) → local coalescence time $(t_c^{(I)})$
 - Polarisation (ψ) → local polarisation $(\psi^{(I)})$

- **Noise** assumed **gaussian, coloured**; interferometer-specific spectrum

- **Likelihood** computation based on Fourier transforms of data and signal

- **Noise** **independent** between interferometers
 ⇒ coherent network likelihood is **product** of individual ones
Prior information about parameters

- different locations / orientations equally likely
- masses: uniform across $[1 \, M_\odot, \, 10 \, M_\odot]$
- events spread uniformly across space: $P(d_L \leq x) \propto x^3$
- but: certain SNR required for detection
- cheap SNR substitute: signal amplitude A
- primarily dependent on masses, distance, inclination: $A(m_1, m_2, d_L, \iota)$
• introduce sigmoid function linking amplitude to detection probability

C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: Coherent Bayesian analysis of inspiral signals
Resulting (marginal) prior density

\[\text{luminosity distance (d_L)} \]

\[\text{total mass (m_t = m_1 + m_2)} \]

C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: *Coherent Bayesian analysis of inspiral signals*
Marginal prior density

![Graph showing the marginal prior density with axes labeled: luminosity distance (dL) on the y-axis and inclination angle (i) on the x-axis. The graph illustrates a distribution with two peaks at π/2 and π.](image-url)
Marginal prior densities

individual masses \((m_1, m_2)\)

inclination angle \((i)\)

[Graphs showing marginal prior densities for individual masses and inclination angle.]
Prior

• prior ‘considers’ **Malmquist effect**

• more realistic settings once **detection pipeline** is set up
MCMC details

- **Reparametrisation**, most importantly: chirp mass m_c, mass ratio η

- **Parallel Tempering**
 - several tempered MCMC chains running in parallel
 - sampling from $p(\theta | y)^{\frac{1}{T_i}}$ for ‘temperatures’ $1 = T_1 \leq T_2 \leq \ldots$

- **Evolutionary MCMC**
 - ‘recombination’ steps between chains—motivated by Genetic algorithms

Example application

- simulated data:
 2 M_\odot - 5 M_\odot inspiral at 30 Mpc distance
 measurements from 3 interferometers:

<table>
<thead>
<tr>
<th></th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHO (Hanford)</td>
<td>8.4</td>
</tr>
<tr>
<td>LLO (Livingston)</td>
<td>10.9</td>
</tr>
<tr>
<td>Virgo (Pisa)</td>
<td>6.4</td>
</tr>
<tr>
<td>network</td>
<td>15.2</td>
</tr>
</tbody>
</table>

- data: 10 seconds (LHO/LLO), 20 seconds (Virgo) before coalescence, noise as expected at design sensitivities

- computation speed: 1–2 likelihoods / second
C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: *Coherent Bayesian analysis of inspiral signals*
C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: *Coherent Bayesian analysis of inspiral signals*
chirp mass (m_c)

mass ratio (η)

individual masses (m_1, m_2)
some posterior key figures

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>95% C.I.</th>
<th>True</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>chirp mass (m_c)</td>
<td>2.699</td>
<td>(2.692, 2.707)</td>
<td>2.698</td>
<td>M_\odot</td>
</tr>
<tr>
<td>mass ratio (η)</td>
<td>0.207</td>
<td>(0.192, 0.225)</td>
<td>0.204</td>
<td></td>
</tr>
<tr>
<td>coalescence time (t_c)</td>
<td>12.3455</td>
<td>(12.3421, 12.3490)</td>
<td>12.3450</td>
<td>s</td>
</tr>
<tr>
<td>luminosity distance (d_L)</td>
<td>31.4</td>
<td>(17.4, 43.5)</td>
<td>30.0</td>
<td>Mpc</td>
</tr>
<tr>
<td>inclination angle (i)</td>
<td>0.726</td>
<td>(0.159, 1.456)</td>
<td>0.700</td>
<td>rad</td>
</tr>
<tr>
<td>declination (δ)</td>
<td>-0.498</td>
<td>(-0.539, -0.456)</td>
<td>-0.506</td>
<td>rad</td>
</tr>
<tr>
<td>right ascension (α)</td>
<td>4.657</td>
<td>(4.632, 4.688)</td>
<td>4.647</td>
<td>rad</td>
</tr>
<tr>
<td>coalescence phase (ϕ_0)</td>
<td></td>
<td></td>
<td>2.0</td>
<td>rad</td>
</tr>
<tr>
<td>polarisation (ψ)</td>
<td></td>
<td></td>
<td>1.0</td>
<td>rad</td>
</tr>
</tbody>
</table>
MCMC chain 1 — temperature = 1

Coherent Bayesian analysis of inspiral signals

C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: *Coherent Bayesian analysis of inspiral signals* 22
MCMC chain 2 — temperature = 2

C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: *Coherent Bayesian analysis of inspiral signals*
MCMC chain 3 — temperature = 4
MCMC chain 4 — temperature = 8
Six tempered chains ‘in action’
Outlook

- incorporation into a ‘loose net’ detection pipeline for large mass ratio inspirals
- use information supplied by detection pipeline (prior or starting point)
- further parameters, e.g. spin effects